Tuesday, 30 May 2017

Exponentiell Gleitender Durchschnitt Standard Abweichung


Standardabweichung Standard Abweichungswert der Marktvolatilitätsmessung. Dieser Indikator beschreibt den Bereich der Preisschwankungen im Vergleich zum Moving Average. Wenn also der Wert dieses Indikators hoch ist, ist der Markt volatil, und die Preise der Bars sind relativ zum gleitenden Durchschnitt verteilt. Wenn der Indikatorwert niedrig ist, kann der Markt mit einer geringen Volatilität beschrieben werden, und die Preise der Stäbe sind eher in der Nähe des gleitenden Durchschnitts. Normalerweise wird dieser Indikator als Bestandteil anderer Indikatoren verwendet. Bei der Berechnung von Bollinger Bandsreg muss man also dem gleitenden Mittelwert den Symbol-Standardabweichungswert hinzufügen. Das Marktverhalten stellt den Austausch hoher Handelsaktivitäten und langweiliger Markt dar. So kann der Indikator leicht interpretiert werden: Wenn sein Wert zu niedrig ist, d. H. Der Markt ist absolut inaktiv, es macht Sinn, eine Spike bald zu erwarten, wenn es extrem hoch ist, bedeutet es höchstwahrscheinlich, dass die Aktivität bald zurückgehen wird. Berechnungen StdDev (i) SQRT (AMOUNT (ji - N, i) N) AMOUNT (ji - N, i) SUM ((ApPRICE (j) - MA (ApPRICE N, i)) 2) StdDev (i) Standardabweichung Des aktuellen Stabes SQRT Quadratwurzel AMOUNT (ji - N, i) Summe der Quadrate von ji - N zu i N Glättungsperiode ApPRICE (j) angewandter Preis der j bar MA (ApPRICE N, i) gleitender Mittelwert mit der N Periode auf der aktuellen Bar ApPRICE (i) angewandten Preis der aktuellen bar. Exponential Moving Average Exponentielle gleitende Durchschnitte werden als die zuverlässigsten der grundlegenden gleitenden durchschnittlichen Typen empfohlen. Sie liefern ein Element der Gewichtung, mit jedem vorangegangenen Tag gegeben progressiv weniger Gewichtung. Eine exponentielle Glättung vermeidet das Problem, das bei einfachen gleitenden Durchschnitten auftritt. Wo der Durchschnitt eine Tendenz hat, zweimal zu quoten: einmal am Anfang der gleitenden durchschnittlichen Periode und wieder in die entgegengesetzte Richtung, am Ende der Periode. Eine exponentielle gleitende durchschnittliche Steigung ist auch leichter zu bestimmen: Die Steigung ist immer unten, wenn der Preis unter dem gleitenden Durchschnitt schließt und immer auf, wenn der Preis oben liegt. Um einen exponentiellen gleitenden Durchschnitt (EMA) zu berechnen: Nehmen Sie den heutigen Preis multipliziert mit einem EMA. Fügen Sie dies zu gestern EMA multipliziert mit (1 - EMA). Wenn wir die frühere Tabelle neu berechnen, sehen wir, dass der exponentielle gleitende Durchschnitt einen weitaus glatteren Trend darstellt: EMA ist die Gewichtung an den aktuellen Tageswert: 50 würde für einen 3-tägigen exponentiellen gleitenden Durchschnitt verwendet 10 wird für einen 19-Tage verwendet Exponentieller gleitender Durchschnitt und 1 wird für einen 199-Tage-exponentiellen gleitenden Durchschnitt verwendet. Um eine ausgewählte Zeitspanne in eine EMA umzuwandeln, verwenden Sie diese Formel: EMA 2 (n 1) wobei n die Anzahl der Tage ist Beispiel: Die EMA für 5 Tage ist 2 (5 Tage 1) 33.3 Unglaubliche Charts führt diese Berechnung automatisch aus, wenn Sie auswählen Eine EMA-Zeit. Vervollkommnen Sie Ihre Markt-Timing Erfahren Sie, wie Sie Ihr Marktrisiko zu verwalten. Exploring Die exponentiell gewichtete Moving Average Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Film Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.)

No comments:

Post a Comment